Similar kinematic properties for ocular following and smooth pursuit eye movements.

نویسندگان

  • Babatunde Adeyemo
  • Dora E Angelaki
چکیده

Ocular following (OFR) is a short-latency visual stabilization response to the optic flow experienced during self-motion. It has been proposed that it represents the early component of optokinetic nystagmus (OKN) and that it is functionally linked to the vestibularly driven stabilization reflex during translation (translational vestibuloocular reflex, TVOR). Because no single eye movement can eliminate slip from the whole retina during translation, the OFR and the TVOR appear to be functionally related to maintaining visual acuity on the fovea. Other foveal-specific eye movements, like smooth pursuit and saccades, exhibit an eye-position-dependent torsional component, as dictated by what is known as the "half-angle rule" of Listing's law. In contrast, eye movements that stabilize images on the whole retina, such as the rotational vestibuloocular reflex (RVOR) and steady-state OKN do not. Consistent with the foveal stabilization hypothesis, it was recently shown that the TVOR is indeed characterized by an eye-position-dependent torsion, similar to pursuit eye movements. Here we have investigated whether the OFR exhibits three-dimensional kinematic properties consistent with a foveal response (i.e., similar to the TVOR and smooth pursuit eye movements) or with a whole-field stabilization function (similar to steady-state OKN). The OFR was elicited using 100-ms ramp motion of a full-field random dot pattern that moved horizontally at 20, 62, or 83 degrees/s. To study if an eye-position-dependent torsion is generated during the OFR, we varied the initial fixation position vertically within a range of +/-20 degrees . As a control, horizontal smooth pursuit eye movements were also elicited using step-ramp target motion (10, 20, or 30 degrees/s) at similar eccentric positions. We found that the OFR followed kinematic properties similar to those seen in pursuit and the TVOR with the eye-position-dependent torsional tilt of eye velocity having slopes that averaged 0.73 +/- 0.16 for OFR and 0.57 +/- 0.12 (means +/- SD) for pursuit. These findings support the notion that the OFR, like the TVOR and pursuit, are foveal image stabilization systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quick phases control ocular torsion during smooth pursuit.

One of the open questions in oculomotor control of visually guided eye movements is whether it is possible to smoothly track a target along a curvilinear path across the visual field without changing the torsional stance of the eye. We show in an experimental study of three-dimensional eye movements in subhuman primates (Macaca mulatta) that although the pursuit system is able to smoothly chang...

متن کامل

Anatomical correlates of ocular motor deficits in cerebellar lesions.

Humans are able to stabilize the images of moving targets on the retina by means of smooth pursuit eye movements. After the pontine level, all smooth pursuit pathways pass through the cerebellum. Previous animal studies gave evidence that two specific lesion sites within the cerebellum cause smooth pursuit disorders: those of the flocculus/paraflocculus and the vermis including lobule VI, VII, ...

متن کامل

The neural basis of smooth pursuit eye movements in the rhesus monkey brain.

Smooth pursuit eye movements are performed in order to prevent retinal image blur of a moving object. Rhesus monkeys are able to perform smooth pursuit eye movements quite similar as humans, even if the pursuit target does not consist in a simple moving dot. Therefore, the study of the neuronal responses as well as the consequences of micro-stimulation and lesions in trained monkeys performing ...

متن کامل

Quick Phases Control Ocular Torsion during Smooth Pursuit 2

26 One of the open questions in oculomotor control of visually-guided eye movements is whether it is 27 possible to smoothly track a target along a curvilinear path across the visual field without changing 28 the torsional stance of the eye. Here we show in an experimental study of three-dimensional eye 29 movements in subhuman primates (Macaca mulatta) that although the pursuit system is able ...

متن کامل

Contribution of the cerebellar flocculus to gaze control during active head movements.

The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2005